arXiv:2408.16465v1 Announce Type: new
Abstract: Recent progress in large language model (LLM) technology has significantly enhanced the interaction experience between humans and voice assistants (VAs). This project aims to explore a user’s continuous interaction with LLM-based VA (LLM-VA) during a complex task. We recruited 12 participants to interact with an LLM-VA during a cooking task, selected for its complexity and the requirement for continuous interaction. We observed that users show both verbal and nonverbal behaviors, though they know that the LLM-VA can not capture those nonverbal signals. Despite the prevalence of nonverbal behavior in human-human communication, there is no established analytical methodology or framework for exploring it in human-VA interactions. After analyzing 3 hours and 39 minutes of video recordings, we developed an analytical framework with three dimensions: 1) behavior characteristics, including both verbal and nonverbal behaviors, 2) interaction stages–exploration, conflict, and integration–that illustrate the progression of user interactions, and 3) stage transition throughout the task. This analytical framework identifies key verbal and nonverbal behaviors that provide a foundation for future research and practical applications in optimizing human and LLM-VA interactions.